Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse.
نویسنده
چکیده
Complex alterations in the anatomy of outer retinal pathways accompany photoreceptor degeneration in the rd1 mouse model of retinitis pigmentosa, whereas inner retinal neurons appear relatively preserved. However, the progressive loss of photoreceptor input likely alters the neural circuitry of the inner retina. This study investigated resulting changes in the activity of surviving ganglion cells. Multielectrode recording monitored spontaneous and light-evoked extracellular action potentials simultaneously from 30 to 90 retinal ganglion cells of wild-type (wt) or rd1 mice. In rd1 mice, this activity evolves through three phases. First, normal spontaneous "waves" of correlated firing are seen at postnatal day 7 (P7) and last until shortly after eye opening. Second, at P14, full-field light flashes evoke reliable responses in many cells, with preferential preservation of off responses. These diminish as photoreceptor degeneration progresses. Third, once light-evoked responses have disappeared in early adulthood, surviving rd1 ganglion cells fire at a much higher spontaneous frequency than normal, sometimes in rhythmic bursts that are distinct from the developmental "waves." This hyperactivity is sustained well into adulthood, for weeks after photoreceptors have disappeared. Thus striking alterations occur in inner retinal physiology as retinal degeneration progresses in the rd1 mouse. Blindness occurs in the face of sustained hyperactivity among ganglion cells, which remain viable for months despite this activity. On and off responses are differentially affected in early stages of degeneration. While the source of these changes remains to be learned, such features should be considered in designing more effective treatments for these disorders.
منابع مشابه
Stasheff - Page 1 Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse
Complex alterations in the anatomy of outer retinal pathways accompany photoreceptor degeneration in the rd1 mouse model of retinitis pigmentosa, while inner retinal neurons appear relatively preserved. However, the progressive loss of photoreceptor input likely alters the neural circuitry of the inner retina. This study investigated resulting changes in the activity of surviving ganglion cells...
متن کاملDevelopmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice.
In a subset of hereditary retinal diseases, early photoreceptor degeneration causes rapidly progressive blindness in children. To better understand how retinal development may interact with degenerative processes, we compared spontaneous and light-evoked activity among retinal ganglion cells in rd1 and rd10 mice, strains with closely related retinal disease. In each, a mutation in the Pde6b gen...
متن کاملAnd of Ophthalmology and Visual Sciences
33 In a subset of hereditary retinal diseases, early photoreceptor degeneration 34 causes rapidly progressive blindness in children. To better understand how retinal 35 development may interact with degenerative processes, we compared spontaneous and 36 light-evoked activity among retinal ganglion cells in rd1 and rd10 mice, strains with 37 closely related retinal disease. In each, a mutation i...
متن کاملSpontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation
Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regar...
متن کاملBlockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice
Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2008